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MOSQUITO: AN EFFICIENT FINITE DIFFERENCE
SCHEME FOR NUMERICAL SIMULATION OF 2D

ADVECTION
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SUMMARY

An explicit finite difference method for the treatment of the advective terms in the 2D equation of
unsteady scalar transport is presented. The scheme is a conditionally stable extension to two dimensions
of the popular QUICKEST scheme. It is deduced imposing the vanishing of selected components of the
truncation error for the case of steady uniform flow. The method is then extended to solve the
conservative form of the depth-averaged transport equation. Details of the accuracy and stability analysis
of the numerical scheme with test case results are given, together with a comparison with other existing
schemes suitable for the long-term computations needed in environmental modelling. Although with a
truncation error of formal order 0(DxDt, DyDt, Dt2), the present scheme is shown actually to be of an
accuracy comparable with schemes of third-order in space, while requiring a smaller computational effort
and/or having better stability properties. In principle, the method can be easily extended to the 3D case.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of advection in advection-dominated transport processes is a common
problem in practical applications of computational hydraulics and fluid dynamics. Although a
great deal of research has been carried out on the subject [1–6], a method of general
applicability that conjugates the properties of stability, accuracy, positivity and conservation of
the tracer with the important practical requirement of running fast enough in a computer
implementation for the present variety of possible applications is still to be devised. In different
scientific and engineering fields some of the above conditions are, therefore, relaxed in order
to achieve the most important properties in view of the specific problem to be solved.
Computational speed is a factor of particular relevance in environmental studies, in which
long-term simulations of advection-dominated hydrodynamics and scalar transport are typi-
cally required, possibly on quite large computational domains and with fine spatial detail [7],
or involving a number of chemically reactive species [8].

As a consequence, besides the investigation of highly accurate, positive-defined computa-
tional schemes suitable for the simulation of sharp gradients [1,9–15], a substantial research
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effort is still being oriented to methods by which a reasonable compromise between accu-
racy and computational speed can be achieved. Basically, methods of this kind are required
to avoid both the computational noise generated by heavy wave dispersion and the unphysi-
cal smoothing related to large numerical diffusion, which can be revealed by Fourier
analysis.

Earlier attempts in this direction led to hybrid formulations using the second-order central
difference scheme or the first-order upwind scheme, depending on local flow conditions
[16,17]. Since then, a number of high-order schemes based on the upwind concept have been
proposed, with some of them being still very popular today [4]. However, schemes that were
proposed for the 1D case often cannot be easily extended to the 2D or 3D case without
losing the simplicity of the original formulation [18].

It is to be noted that, particularly in shallow water problems of subcritical flow, the
presence of numerical diffusion—here specifically related to second-order spatial deriva-
tives—is particularly awkward in scalar transport models. In fact, although in hydrody-
namic models advection is non-linear, in practice the artificial dissipation introduced by
numerical algorithms can often be acceptable when compared with the physical dissipation
effect related to bottom friction [19]. For the above reasons this study deals with numerical
simulation of advection in linear advection-dominated scalar transport models.

A finite difference scheme for 2D advection will be described, which is efficient and
reasonably accurate for the range of practical applications mentioned above. The present
scheme can be referred to as an extension of the well-known QUICKEST scheme [4], which
is recovered in the 1D case. However, the derivation of the method is somehow different
from that by the original author. Moreover, its extension to the 3D case is straightforward
in principle.

A recent, thorough review and comparison of popular finite difference schemes well-suited
for long-term and large-scale simulation of 2D advection–diffusion in the sense stated
above, has been carried out by Chen and Falconer [20]. The study was primarily concerned
with a generalized formulation of the so-called third-order convection second-order diffusion
scheme, originally proposed by Bradley et al. [21]. After theoretical accuracy and stability
analysis for the 1D formulation, the so-called semi-time-centred (TCS) and fully-time-cen-
tred (TCF) implicit versions have proved suitable for practical applications, with the former
being preferred for overall efficiency reasons (this point will be reconsidered in the follow-
ing).

Chen and Falconer then compare a 2D ADI formulation of TCS with the following
models: the semi-time-centred ADI-QUICK scheme [18], the Crank–Nicolson central
scheme [22], a direct 2D implementation of the explicit QUICKEST scheme [4], a modified
QUICKEST scheme [23], and the two-point fourth-order scheme [3,24]. On a global balance
as to accuracy, stability and mass conservation, TCS proved more efficient than the other
methods.

Further to Chen and Falconer’s comprehensive analysis, a new valuable numerical scheme
has been proposed by Webb et al. [7], based on a modification of the popular QUICK
scheme [4]. It represents a conservative formulation of the Bradley et al. method [21]. The
scheme (modified split QUICK, MSQ) is split into an advective term and a higher-order
dissipation term. Each term is then time stepped so as to achieve stability, namely by the
leapfrog and the Euler-forward schemes respectively, as outlined further in this paper.

Besides TCS, TCF and MSQ, the present method is compared with the QUICK scheme
with Matsuno time stepping [5] (QMA), mentioned in [7] as a suitable way to stabilize the
2D explicit QUICK scheme.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 481–496 (1999)
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2. RATIONALE OF THE METHOD

The 2D depth-averaged advection–diffusion equation in conservation form can be written as
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where c is the depth-averaged concentration of the modelled species, x and y the Cartesian
co-ordinates, t the time, h the water depth, u and 6 the depth-averaged x and y velocity
components respectively, Dx and Dy the diffusion coefficients. Though the final aim of this
work is to devise a conservative scheme for 2D advection, in order to outline the derivation of
the method we first resort to the pure 2D advection equation in non-conservation form in a
field of uniform and constant velocity of components u and 6 :

(c
(t

+u
(c
(x

+6
(c
(y

=0. (2)

Consider the following explicit, biased upwind discretization of Equation (2) on the regular
grid shown in Figure 1 for the case of positive u and 6 :
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Figure 1. Computational stencil for positive velocity components u, 6.
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where i and j are the space indices, n is the time index, and the coefficients a, b, g, d, a %, b %,
g %, d % and e, are presently to be determined. Developing Equation (3) by Taylor series, and
making use of the relations between higher-order time and space derivatives of the concentra-
tion c, leads to the following expression:
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where HOT stands for higher-order terms. The nine unknown coefficients can now be set so
as to ensure that the finite difference scheme is consistent with the transport equation and that
some selected truncation error terms vanish. Consistency is achieved by imposing the vanishing
of the term multiplied by the concentration c in the second term on the left-hand-side and that
the terms multiplied by the first-order space derivatives, (c/(x and (c/(y, be equal to u and 6
respectively.

As far as regards the remainder of the truncation error, the vanishing of the factors of the
three second-order space derivatives related to numerical diffusion and of the third-order
derivatives with respect to the same variable (i.e. (3c/(x3, (3c/(y3) is imposed. The e

coefficient can be easily determined explicitly, while the remaining eight unknown coefficients
depend on seven relations only. The extra degree of freedom is used to impose separately
u(a+b+g+d)/Dx−e/2Dt=0 and 6(a %+b %+g %+d %)/Dy−e/2Dt=0 in the factor of the
concentration c in Equation (4). Solving the resultant linear system leads eventually to the
expressions of the unknown coefficients:
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where Cx=uDt/Dx and Cy=6Dt/Dy are the Courant numbers relating to the x- and
y-directions respectively. By substituting these coefficients back into Equation (4), the trunca-
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tion error can be shown to be 0(DxDt, DyDt, Dt2) (see Equation (11)). The scheme can be said
to be of second-order, in a loose sense, if it is assumed that space and time increments tend to
zero for fixed values of the Courant numbers, Cx and Cy.

It should be noted that for the special case of 1D flow, which is achieved by dropping the
primed and the e coefficients in Equation (3), all the truncation error terms up to second-order
both in space and time would vanish, yielding precisely Leonard’s QUICKEST scheme [4]. The
present scheme can thus be regarded as a MOdified Second-order QUIckest scheme for
Two-dimensional advectiOn and will be referred to in the following as MOSQUITO (MOS).

Indeed, the direct 2D extension of the QUICKEST scheme on a grid not including the
diagonal cell, i.e. dropping the e coefficient alone in Equation (4), would result in a numerical
diffusion term of first-order in time in the truncation error, related to the mixed second space
derivative, with diffusion coefficient Dn= −u6. This diffusive term would lead to instability
when u6\0, or to relatively high dissipation when u6B0.

The scheme can be easily recast in conservation form expressing it in terms of fluxes through
the sides of the cell control volume. Further extending it to solve the 2D depth-averaged
equation (1), with variable u and 6, and considering all four possible combinations of their
signs and a variable depth h, leads eventually to the following conservative scheme:
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and
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with Cx, Cy being Courant numbers. Similar expressions hold for the y-flux terms.

3. ACCURACY AND STABILITY ANALYSIS

The MOSQUITO scheme has been compared for accuracy, stability and performance with
four 2D schemes, namely TCS [20], TCF [20], MSQ [7] and QMA [7], with the last one being
included as an example of unsatisfying stabilization of the explicit QUICK scheme. In the
above quoted paper, the MSQ properties have been shown for the semi-discretized transport
equation, i.e. regardless of time discretization. Here, that scheme will be considered in
conjunction with the mixed leapfrog Euler-forward time stepping actually needed for stability
in an explicit formulation:
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Resorting to the usual hypotheses of steady uniform flow (u, 6=constant), the truncation
errors of the finite difference schemes, TE, can be evaluated by a Taylor series expansion:
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From Equation (14) it can be seen that QMA is affected by a numerical diffusion error
component that is first-order in time. This would also occur with the fully explicit QUICK
scheme [18]. However, in that case a negative defined numerical diffusion coefficient would
result in unconditional instability of the scheme. The effect of the Matsuno time stepping is
that of stabilizing the scheme by making it dissipative. All other schemes are free from
numerical diffusion. Note that TCS can be said to be actually third-order-accurate in the same
sense as MOS can be said to be second-order-accurate. It should also be noted that the effect
of leapfrog time stepping used in MSQ is that of introducing a computational mode besides
the physical mode in the numerical solution [5].

This can be shown by Fourier analysis for the case of steady uniform flow, substituting into
the finite difference schemes the harmonic component in complex form:

c(xi, yj, tn)=Re(ĉ(tn) exp[I(kxiDx+kyjDy)]), (16)

where Re stands for real part of a complex number, I=
−1, kx and ky are the wave
numbers in the x- and y-directions respectively, and ĉ(tn) is the wave amplitude. A thorough
2D analysis consisting of the evaluation of the attenuation characteristics of the single wave
components (whose behaviour, however, converges rather quickly to the long wave condi-
tions), leads to the following stability conditions:

MOS max{Cx, Cy}51, (17)

TCS Cx+Cy52, (18)

QMA Cx+Cy51, (19)

MSQ (physical mode) Cx+Cy51, (20)

MSQ (computational mode) Cx+Cy50.5, (21)

while TCF is unconditionally stable. Equation (18) has been already given in [20]. For brevity,
the amplification factor, �l �—defined as l= ĉ n+1/ĉ n [5]—and the numerical over exact celerity
ratio of the 2D wave as a function of the Courant number and the normalized wave number,
q=kDs/p, Ds=Dx=Dy, are shown in graphic form in Figures 2 and 3 respectively, for
Cx=Cy=Cr and kx=ky=k.

4. TEST CASES

The numerical schemes have been verified for solution accuracy and CPU time performance
with several classical test cases, either for advection alone or for advection–diffusion. Diffu-
sion was included through a standard second-order Euler forward scheme [6]. For the case of
advection alone, actual computations were carried out including the diffusion terms with zero
diffusion coefficients. Moreover, although the computational domain of the test cases is quite
simple, the schemes have been implemented in the kernel routine with all the options for a
realistic simulation, i.e. including controls for possible closed or open boundaries. Thus, the
timings reported in the following for the kernel routine are representative of realistic advec-
tion–diffusion simulations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 481–496 (1999)



A. BALZANO488

Figure 2. Amplification factor of 2D schemes (a) MOS, (b) TCS, (c) TCF, (d) QMA, (e) MSQ-physical mode, and (f)
MSQ-computational mode, as a function of the normalized wave number, q=kDs/p, and the Courant number, Cr,

for kx=ky=k and Cx=Cy=Cr.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 481–496 (1999)
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Figure 3. Numerical over exact phase celerity ratio of the 2D schemes (a) MOS, (b) TCS, (c) TCF, (d) QMA, (e)
MSQ-physical mode, and (f) MSQ-computational mode, as a function of the normalized wave number, q=kDs/p,

and the Courant number, Cr, for kx=ky=k and Cx=Cy=Cr.
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Figure 4. 2D advection of a circular column source in a rotational flow using (a) MOS, (b) TCS, and (c) TCF
schemes.
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Figure 5. 2D advection of a circular column source in a rotational flow using (a) QMA and (b) MSQ schemes.

The first test case refers to pure advection of a circular column concentration distribution of
peak value cmax=50 mg L−1 in a rotational flow [20]. The domain is an ideal one of size
101×101, Dx=Dy=100 m, and constant depth. The centre of the concentration column of
radius R=9Dx is located at time t=0 in the cell (51, 31). The rotation period is T=18 h.
Zero concentrations were imposed at inflow boundaries and zero normal derivatives at outflow
boundaries. The test was run with the time steps Dt=50, 100, 200 and 400 s. In Figures 4 and
5, the results obtained for Dt=50 are presented. This was the only value of Dt for which all
five methods were stable. The figures show a snapshot of four positions of the concentration
distributions during the second rotation. The maximum and minimum concentration values
over the whole domain refer to the final situation, after 36 h from the start.

In all the tests with the three-time-level scheme, MSQ, the first time step was computed by
the most accurate of the two-time-level schemes, namely TCF. All methods showed relative
mass variations compared with the initial value of order 910−6}10−4. As can be seen, the
quality of the solution is slightly different among MOS, TCS, TCF and MSQ, while QMA,

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 481–496 (1999)
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showing a significant attenuation as a result of the 0(Dt) numerical diffusivity introduced with
the Matsuno time stepping, is by far the least accurate of the five schemes. MSQ was unstable
for Dt=100 s, QMA for Dt=200 s, and MOS for Dt=400 s. It is to be noted, however, that
TCS becomes actually unstable for values of Dt slightly greater than 400 s, and MOS for
Dt\300 s.

CPU times for the above test case run with Dt=50 s on a Pentium 200 PC with a Linux
operating system and a GNU FORTRAN compiler are shown in Table I.

MSQ is clearly the most efficient of the five schemes for the same time step; however, as
already noticed, it has a rather severe stability condition, since it is no longer stable, not even
from values of Dt=100 s. QMA suffers because of the predictor–corrector algorithm, which,
more or less, doubles the computational effort. Surprisingly, despite requiring 8N−7 and
19N−29 arithmetical operations for each ADI sweep to invert the three- and five-diagonal
matrices respectively with the Thomas algorithm for a mesh of N cells [18], TCS and TCF take
only slightly different CPU times. Therefore, the above results suggest that whenever large
values of the Courant number are expected, TCF would be more attractive than TCS because
of its unconditional stability.

MOS seems to be a good compromise between accuracy and stability properties compared
with MSQ. However, being a two-time-level scheme, it is not affected by computational
modes. Note that the effect of spurious roots on MSQ accuracy could be more pronounced in
less simple cases than the above test case.

The second test case deals with pure advection of the same circular column concentration
distribution in the same domain as in the case of rotational flow. However, in this case
uniform flow at 45° with respect the Cartesian axes with u=6=0.3 m s−1 takes place. The
centre of the concentration column is located in the cell (11, 11) at time t=0. The test was run
with the time steps Dt=50, 100, 200, and 400 s. In Figures 6 and 7 the results obtained for
Dt=50 s in four instants from start to about 6.7 h later are presented. Again, this was the only
value of Dt for which all five methods were stable.

As in the previous test, the quality of the solution is slightly different among MOS, TCS,
TCF and MSQ, while QMA shows remarkable damping. Instabilities occurred for the various
methods with the same time steps as in the previous test case.

Addition of physical diffusion further reduces the differences between the performances of
the methods. Figure 8 shows the longitudinal and transverse sections of the concentration
distributions yielded by the various methods after release of a Gaussian source in the same
rotational flow as in the first test, at the end of each rotation. The Gaussian source has a peak
value Cmax=50 mg L−1 and standard deviations sx=sy=350 m, while the diffusion coeffi-
cients were constant and representative of typical conditions in practical applications of
environmental hydraulics, Dx=Dy=0.5 m2 s−1. The numerical results compare favourably
with the exact solution, except for QMA, which again undergoes excessive numerical damping,
while negative values are kept at a reduced magnitude.

Table I. CPU times for the test case of advection of circular column in
rotational flow

TCS TCF QMA MSQMOS

275 159CPU time [s] 182 595 606

Dt=50 s.
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Figure 6. 2D advection of a circular column source in a uniform flow using (a) MOS, (b) TCS, and (c) TCF schemes.
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Figure 7. 2D advection of a circular column source in a uniform flow using (a) QMA and (b) MSQ schemes.

It is to be noted that MOS introduces numerical diffusion of order 0(Dt) in the solution of
steady state problems as a consequence of the method derivation, while, being time centred,
TCS, TCF and MSQ do not. However, in this case, the short computational time required by
MOS makes feasible in practice an appropriate reduction of the time step in order to limit the
numerical diffusion to acceptable values. Also, in principle, the method derivation itself could
be adapted for the steady state by neglecting the higher-order time derivatives resulting from
the Taylor series development of the discretized first-order time derivative in the expression of
the truncation error, Equation (4). In fact, this derivative should be identically zero for the
steady state [25].

5. CONCLUSIONS

An explicit 2D scheme for numerical simulation of advection (MOSQUITO, MOS), represent-
ing an extension of the 1D QUICKEST scheme, has been presented. Like the 1D QUICKEST

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 481–496 (1999)
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Figure 8. 2D advection–diffusion of a Gaussian source in a rotational flow with diffusion coefficients Dx=Dy=0.5
m2 s−1: (a) longitudinal and (b) cross-section of the concentration distribution.

scheme, MOS is a method for unsteady state problems. Although with truncation error of
formal order 0(Dx/Dy, DyDt, Dt2), the scheme has been shown to be actually of an accuracy
comparable with schemes of third-order in space.

Compared with MSQ, MOS is about 20% slower; however, it has better stability properties
and is free from computational modes. Compared with TCS and TCF, MOS is considerably
faster and is thus a valuable alternative to those schemes. Consequently, MOS is also to be
preferred to other popular finite difference schemes, e.g. the ADI QUICK and the two-point
fourth-order Eulerian–Lagrangean, and all the schemes that were proved to be less accurate
than TCS and TCF in [20]. The slight difference in accuracy among MOS, TCS, TCF and
MSQ is further reduced in the presence of physical diffusion. Moreover, in the case of steady
state problems, the short computational time required by the method seems to make it feasible,
in practice, to reduce appropriately the time step in order to limit the first-order in time
numerical diffusion introduced. Also, extension to the 3D case is straightforward in principle.
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